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Some Remarks on the Notion of
Contraction of Lie Group Representations

Benjamin Cahen

Abstract. In the series of papers [1-4], L. Barker developed a general
notion of convergence for sequences of Hilbert spaces and related ob-
jects (vectors, operators. . . ). In this paper, we remark that Barker’s
convergence for sequences of operators provides a notion of contraction
of Lie group (unitary) representations and we compare it to the usual
one introduced by J. Mickelsson and J. Niederle. This allows us to illus-
trate Barker’s convergence of operators by various examples taken from
contraction theory.

1. Introduction

In the pioneering paper [19], Inönü and Wigner introduced the notion of
contraction of Lie groups and Lie group representations on physical grounds:
If two physical theories are related in a limiting process, then the associ-
ated invariance groups and their representations should be also related in
a limiting process called contraction. For instance, the Galilei group is a
contraction of the Poincaré group [19].

Contractions of Lie algebras, Lie groups and their representations have
been studied by many authors and continue to be a subject of active research,
see for instance the papers [17], [18] and their references.

In fact, the systematic study of contractions of Lie group representations
began with the work of Mickelsson and Niederle. In [22], a proper definition
of the contraction of unitary representations of Lie groups was given for the
first time and was illustrated by various examples, including contractions
of the principal series representations of SO0(n+ 1, 1) to the non-zero mass
representations of the Euclidean group Rn+1 oSO(n+1) and to the positive
mass-squared representations of the Poincaré group Rn+1 oSO0(n, 1). More
generally, in [16], Dooley and Rice established a contraction of the principal
series representations of a semi-simple Lie group to some unitary irreducible
representations of its Cartan motion group.
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In [14] and [13], contractions of representations were interpreted in the
setting of the Kirillov-Kostant method of orbits [20] and, in [13] and [5]-[10],
Berezin andWeyl quantization maps were used in order to obtain contraction
results.

Recently, in the series of papers [1]-[4], L. Barker developed a general
theory of convergence for a sequence (Hn) of Hilbert spaces in order to
describe continuum quantum systems as limits of discrete quantum systems.
This theory includes a notion of convergence for a sequence fn ∈ Hn and
for a sequence (An) where An is a bounded operator on Hn for each integer
n > 0.

Although this is not said explicitly in [3], it appears that Barker’s con-
vergence of operators immediately gives a new notion of contraction of Lie
group unitary representations. The main goal of the present paper is then
to compare this notion to the usual one introduced in [22].

This paper is organized as follows. In Section 2, we recall some basic facts
about contractions and, in Section 3, we outline Barker’s theory. In Section
4, we establish our main results. We compare the notion of contraction of Lie
group unitary representations which derives from Barker’s theory with that
of Mickelsson and Niederle. In particular, we show that a contraction of Lie
group representations in the sense of [22] is also a contraction in the sense of
Barker’s theory, the converse being true under some additional assumptions.
In Section 5, we give some examples of contractions and we mention some
open questions.

2. Generalities on Contractions

In this section, we review some basic facts on contractions. The material of
this section is essentially taken from [22] (see also [8]). We begin by recalling
the definitions of a Lie algebra contraction and a Lie group contraction.

LetG andH be two real Lie groups with Lie algebras g and h, respectively.
We assume that g and h have the same dimension and we denote by [·, ·]1
and [·, ·]0 the Lie brackets on g and h, respectively.

Definition 2.1. A contraction of g to h is a family (Cr)r∈]0,1] of linear
isomorphisms from g onto h such that

lim
r→0

C−1
r [Cr (X) , Cr (Y )]1 = [X,Y ]0

for all X and Y in h.

Definition 2.2. A contraction of G to H is a family (cr : V → G)r∈]0,1] of
smooth maps defined on the same neighborhood V of the identity element
eH of H satisfying the properties:

(1) For each r ∈]0, 1], cr maps eH to the identity element eG of G;
(2) There exists an open neighborhood W of eG such that cr is a diffeo-

morphism of c−1
r (W 2) onto W 2 for each r ∈]0, 1];
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(3) For each x ∈ V there is rx ∈]0, 1] such that cr(x) ∈W for r < rx;
(4) For all x, y in V , we have

lim
r→0

c−1
r (cr(x). cr(y)) = xy.

Because of (2) and (3), the expression that is taken to the limit in (4) is
well defined for r < rx, ry . If the family (cr)r∈]0,1] is a contraction of G to
H then the family (dcr(eH))r∈]0,1] is a contraction of g to h. Conversely, if
(Cr)r∈]0,1] is a contraction of g to h such that the family (‖Cr‖op, r ∈]0, 1])
is bounded then by adapting arguments of the proof of Theorem 2.15.4 in
[24] one can show that the family (Cr)r∈]0,1] exponentiates to a contraction
(cr = expG ◦Cr ◦ exp−1

H )r∈]0,1] of G to H.
Now, we fix a contraction (cr)r∈]0,1] of G to H as in Definition 2.2. For

each integer n > 0 let πn be a unitary representation of G on a Hilbert space
Hn. Let ρ be a unitary representation of H in a Hilbert space H. We denote
by 〈·, ·〉n and 〈·, ·〉 the scalar products on Hn and H and by ‖ · ‖n and ‖ · ‖
the corresponding norms.

Definition 2.3. We say that the representation ρ is a MN-contraction of the
sequence (πn) if there exists a sequence r(n) ∈]0, 1] with limit 0, a sequence
of unitary operators An : Hn → H and a dense subspace D of H satisfying
the following properties:

(1) For each f ∈ D there exists an integer n0 > 0 such that for each
n ≥ n0 we have f ∈ An(Hn);

(2) For each f ∈ D and h ∈ V , we have

lim
n→+∞

‖An πn (cr(n) (h))A−1
n f − ρ (h)f‖ = 0.

Note that the expression that is taken to the limit in Definition 2.3 is
well-defined for n ≥ n0.

Remark 2.4. Let f1 and f2 in D. Clearly, since the operators An are
unitary, Property (2) of Definition 2.3 implies that

(2.1) lim
n→+∞

〈πn (cr(n)(h))A
−1
n f1 , A

−1
n f2〉n = 〈ρ (h)f1 , f2〉

for each h ∈ V . Conversely, assume that (2.1) holds for each f1, f2 ∈
D and each h ∈ V . Let f ∈ D and h ∈ V . Then we immediately
see that (An πn (cr(n) (h))A−1

n f) converges weakly to ρ (h)f in H. Since
‖An πn (cr(n) (h))A−1

n f‖ = 1 = ‖ρ (h)f‖, we have that (An πn (cr(n) (h))
A−1
n f) converges strongly to ρ (h)f in H.

Remark 2.5. Here we mention two important particular cases of MN-
contractions.

1) The case when An(Hn) = H for each n. In that case, we can assume
that D = H in Definition 2.3. Indeed, if Property (2) of Definition
2.3 holds for each f ∈ D then Property (2) also holds for each
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f ∈ H. Moreover, if (fp) is an orthonormal basis of H, then for
each n, fnp = A−1

n fp is an orthonormal basis for Hn and, according
to Remark 2.4, we see that Property (2) of Definition 2.3 is equivalent
to the fact that

(2.2) lim
n→+∞

〈πn (cr(n)(h)) f
n
p , f

n
q 〉n = 〈ρ (h)fp , fq〉

for each h ∈ V and each p, q. An example of such a situation is
given in Section 5.

2) The case when Hn is finite-dimensional for each n. See in particular
[15], [23], [6] and [9].

Remark 2.6. In the setting of Definition 2.3, note that, since the operators
An are unitary, An(Hn) is a closed subspace of H for each n. Let Rn be the
operator from H to Hn defined by Rnf = A−1

n f if f ∈ An(Hn) and Rnf = 0
if f is orthogonal to An(Hn). Then we have

lim
n→+∞

〈Rnf1 , Rnf2〉n = 〈f1 , f2〉

for each f1, f2 ∈ D.

In the literature, we can also find the following notion of contraction of
Lie group unitary representations which is weaker than MN-contraction (see
for instance [12]).

Definition 2.7. If, in Definition 2.3, we replace the condition that the
operatorsAn are unitary by the condition that the operatorsAn are injective,
continuous, satisfying limn→+∞ ‖A−1

n f‖n = ‖f‖ for each f ∈ D, then we say
that ρ is a nuMN-contraction of (πn).

3. Barker’s Theory

In this section, we outline Barker’s theory. See [1], [3] and, for applications
to Physics, [2] and [4].

As in Section 2, we consider a sequence (Hn) of Hilbert spaces, a Hilbert
space H and a dense subspace D of H. Let Rn : D → Hn be a sequence of
linear maps satisfying

(3.1) 〈f , g〉 = lim
n→+∞

〈Rnf , Rng〉n

for each f, g ∈ D. The family (Hn, Rn) is then called an inductive resolution
of H.

Definition 3.1 ([1]). Let f ∈ H and, for each n, fn ∈ Hn. We say that the
sequence (fn) converges to f if the sequence (‖fn‖n) is bounded and

〈g , f〉 = lim
n→+∞

〈Rng , fn〉n

for each g ∈ D. We call f the limit of (fn) and we write f = limn→+∞ fn.
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Clearly, we have f = limn→+∞Rnf for each f ∈ D. Moreover, it was
shown in [1] that any f ∈ H is the limit of a sequence fn ∈ Hn such that
‖fn‖n = ‖f‖ for each n.

The following result will be needed in Section 4.

Proposition 3.2 ([1]). Let (ep)p be an orthonormal basis of H. Then we
can choose an orthonormal basis (enp )0≤p<pn of Hn for each n (here pn ∈
N ∪ (+∞)) in such a way that limn→+∞ e

n
p = ep for each p. Moreover,

if we consider a sequence fn ∈ Hn and an element f ∈ H and we write
f =

∑
p apep and f =

∑
p a

n
pe
n
p with the understanding that anp = 0 for

p ≥ pn, then (fn) converges to f if and only if (‖fn‖n) is bounded and
limn→+∞ a

n
p = ap for each p.

Definition 3.3 ([3]). Let B be a bounded operator on H and, for each n, let
Bn be a bounded operator on Hn. We say that the sequence (Bn) converges
to B if the sequence (‖Bn‖op) is bounded and if for each f ∈ H and each
sequence fn ∈ Hn with limit f , we have Bf = limn→+∞Bnfn.

Now we deduce from Definition 3.3 a new notion of contraction for Lie
group representations. As in Section 2, we consider two real Lie groups G
and H, a group contraction (cr)r∈]0,1] of G to H and a neighborhood V of
eH as in Definition 2.2. Let ρ be a unitary representation of H on a Hilbert
space H and, for each n, let πn be a unitary representation of G on a Hilbert
space Hn.

Definition 3.4. We say that ρ is a B-contraction of the sequence (πn) if
there exists a dense space D of H, an inductive resolution (Hn, Rn : D →
Hn) of H and a sequence r(n) ∈]0, 1] with limit 0 such that the sequence
πn(cr(n)(h)) converges to ρ(h) for each h ∈ V . If moreover, each operator
Rn can be extended to a continuous operator R̃n from H onto Hn such that
R̃n|(Ker R̃n)⊥ is unitary, then we say that ρ is a uB-contraction of (πn).

4. Comparison Between Different Notions of Contraction

In this section, we compare the notions of contractions of Lie group repre-
sentations introduced in the previous sections. First, we compare the notion
of MN-contraction to that of uB-contraction. These two notions are partic-
ularly adapted to the unitary setting.

As in the previous sections, we consider two real Lie groups G and H.
We assume that there exists a group contraction (cr)r∈]0,1] of G to H. We
also consider a unitary representation ρ of H on a Hilbert space H and, for
each n, a unitary representation πn of G on a Hilbert space Hn.

Proposition 4.1. If ρ is a MN-contraction of (πn) then ρ is a uB-contraction
of (πn).
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Proof. If ρ is a MN-contraction of (πn) then we can define the operators Rn
as in Remark 2.6. Thus (Hn, Rn) is an inductive resolution of H.

Let D ⊂ H, V ⊂ H and (r(n)) as in Definition 2.3. We fix h ∈ V and in
order to simplify the notation we put Bn := πn(cr(n)(h)) and B := ρ(h).

Fix f ∈ H. Let fn ∈ Hn be a sequence which converges to f . We
have to prove that (Bnfn) converges to Bf . First, we note that the norms
‖Bnfn‖n = ‖fn‖n are bounded.

Let (ep) be an orthonormal basis of H consisting of elements of D. For
each n, let (epn) be an orthonormal basis of Hn as in Proposition 3.2, that
is, (epn) converges to ep for each p. We can write as in Proposition 3.2

fn =
∑

0≤q<pn

anq e
n
q , f =

∑
q

aqeq.

We also put
cnpq := 〈Bnenp , enq 〉n, cpq := 〈Bep, eq〉.

The proof is now divided into four steps.
1) Firstly, we note that limn→+∞ ‖A−1

n ep− enp‖n = 0 for each p. Indeed, we
have

‖A−1
n ep − enp‖2n = ‖A−1

n ep‖2n + ‖enp‖2n − 2 Re〈A−1
n ep, e

n
p 〉n

where ‖A−1
n ep‖2n = ‖enp‖2n = 1 and 〈A−1

n ep, e
n
p 〉n = 〈Rnep, enp 〉n converges to

〈ep, ep〉 = 1 as n→ +∞ because (enp ) converges to ep.
2) Secondly, we show that limn→+∞ c

n
pq = cpq for each p and q. This can be

done as follows. We have

〈Bnenp , enq 〉n − 〈BnA−1
n ep, A

−1
n eq〉n

= 〈Bn(enp −A−1
n ep), A−1

n eq〉n + 〈BnA−1
n eq, e

n
q −A−1

n eq〉n
+ 〈Bn(enp −A−1

n ep), enq −A−1
n eq〉n.

Since the operators Bn and An are unitary, this implies that

|〈Bnenp , enq 〉n − 〈BnA−1
n ep, A

−1
n eq〉n|

≤ ‖enp −A−1
n ep‖n + ‖enq −A−1

n eq‖n
+ ‖enp −A−1

n ep‖n‖enq −A−1
n eq‖n

By using Point 1), we then obtain

lim
n→+∞

(〈Bnenp , enq 〉n − 〈BnA−1
n ep, A

−1
n eq〉n) = 0.

On the other hand, by Remark 2.5, we have that

lim
n→+∞

〈BnA−1
n ep, A

−1
n eq〉n = 〈Bep, eq〉 = cpq.

This gives the result.
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3) Now we will show that

(4.1) lim
n→+∞

〈Bnfn, enp 〉n = 〈Bf, ep〉

for each p. To this aim, we write

〈Bnfn, enp 〉n = 〈fn, B−1
n enp 〉n =

∑
q

〈fn, enq 〉n〈enq , B−1
n enp 〉n

=
∑
q

〈fn, enq 〉n〈Bnenq , enp 〉n =
∑
q

anq c
n
qp

and, similarly,
〈Bf, ep〉 =

∑
q

aqcqp.

Now we fix ε > 0. Let M = 1 + ‖f‖+ supn ‖fn‖n. Note that

1 = ‖B−1ep‖2 =
∑
q

|〈Beq, ep〉|2 =
∑
q

|cqp|2.

Choose q0 so that
∑

q>q0
|cqp|2 < ε2/9M2. Thus we have

1− ε2/9M2 <
∑
q≤q0

|cqp|2

and using Point 2) we see that there exists n1 so that

1− ε2/9M2 <
∑
q≤q0

|cnqp|2

and hence
∑

q>q0
|cnqp|2 < ε2/9M2 for each n ≥ n1. Applying the Cauchy-

Schwarz inequality, we then obtain∑
q>q0

|anq cnqp| ≤

(∑
q>q0

|anq |2
)1/2(∑

q>q0

|cnqp|2
)1/2

≤ ‖fn‖n ε/3M ≤ ε/3
for each n ≥ n1. Similarly, we have∑

q>q0

|aqcqp| ≤ ‖f‖ ε/3M ≤ ε/3.

Finally, writing ∑
q

|anq cnqp − aqcqp| ≤
∑
q≤q0

|anq cnqp − aqcqp|

+
∑
q>q0

|anq cnqp|+
∑
q>q0

|aqcqp|

and using Proposition 3.2 and Point 2) we see that there exists n2 so that∑
q

|anq cnqp − aqcqp| ≤ ε
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for each n ≥ n2. Hence (4.1) is proved.
4) By combining Point 1) and Point 3), we then obtain

lim
n→+∞

〈Bnfn, A−1
n ep〉n = 〈Bf, ep〉.

This finishes the proof of Proposition 4.1. �

The following proposition can be considered as a converse of Proposition
4.1.

Proposition 4.2. Let ρ be a uB-contraction of (πn). Assume that for each
f ∈ D there exists an integer n(f) such that ‖Rnf‖n = ‖f‖ for all n ≥ n(f).
Then ρ is a MN-contraction of (πn).

Proof. Define the operators An by An := R̃−1
n : Hn → (Ker R̃n)⊥ ⊂ H. The

additional assumption guarantees that each f ∈ D lies in An(Hn) for n large
enough. Moreover, for each f ∈ D, the sequence A−1

n f = Rnf converges
to f and then the sequence BnRnf converges to Bf (here we use the same
notation as in the proof of Proposition 4.1). In other words, we have

〈Rng,BnRnf〉n = 〈g,AnBnA−1
n f〉 → 〈g,Bf〉

as n→ +∞ for each g ∈ D. This shows that (AnBnA−1
n f) converges weakly

to Bf in H. Since ‖AnBnA−1
n f‖ = ‖f‖ = ‖Bf‖, we find that (AnBnA−1

n f)
converges strongly to Bf . This gives the desired result. �

We also have the following result.

Proposition 4.3. If ρ is a nuMN-contraction of (πn) then ρ is a B-contraction
of (πn).

Proof. For each n, we fix a subspace Sn ⊂ H complement to An(Hn) and
we define the operator Rn by Rn = A−1

n on An(Hn) and Rn = 0 on Sn.
For each f and g in D, we have f, g ∈ An(Hn) for n large enough. Then,
recalling Definition 2.7, we have

〈Rnf,Rng〉n = 〈A−1
n f,A−1

n g〉n → 〈f, g〉
as n→ +∞. Hence (Hn, Rn) is an inductive resolution of H.

The rest of the proof goes as in the proof of Proposition 4.1. The only
change is that we have limn→+∞ ‖A−1

n ep‖n = 1 instead of ‖A−1
n ep‖n = 1 for

each n. �

5. Examples, Remarks and Open Questions

5.1. A contraction of SU(1, 1) to the Heisenberg group. Here we
take G = SU(1, 1) and H to be the 3-dimensional Heisenberg group. Let
{X,Y, Z} be a basis of h in which the only nontrivial bracket is [X,Y ] = Z.
We consider the contraction of g to h defined by

Cr(aX + bY + cZ) =
1
2

(
−ir2c r(b− ia)

r(b+ ia) ir2c

)
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and the corresponding group contraction defined by

cr(expH(aX + bY + cZ)) = expGCr(aX + bY + cZ).

The group G acts on the unit disk D = (|z| < 1) by linear fractional
transformations. For each integer n > 2, we consider the Hilbert space Hn
of all holomorphic functions f on D such that

‖f‖2n :=
∫

D
|f(z)|2 dµn(z) < +∞

where dµn(z) := n−1
π (1−|z|2)n−2 dxdy. Here we denote by dxdy the Lebesgue

measure on C ' R2. The family fnp (z) =
(
n+p−1

p

)1/2
zp, p ∈ N, is an or-

thonormal basis of Hn. Let πn be the unitary representation of G on Hn
given by

πn(g) f(z) = (a− bz)−n f(g−1 · z), g =
(
a b

b a

)
.

The family (πn) is then called the holomorphic discrete series ofG = SU(1, 1)
[21].

On the other hand, we fix a real number λ > 0 and we denote by Hλ the
Hilbert space of all holomorphic functions f on C such that

‖f‖2λ :=
∫

C
|f(z)|2 dµλ(z) < +∞

where dµλ(z) := 1
2πλ exp(−|z|2/2λ) dxdy. The family

fλp (z) =
1√

(2λ)pp!
zp, p ∈ N,

is an orthonormal basis of Hλ. Let ρλ be the unitary irreducible represen-
tation of H on Hλ defined by

ρλ(expH(aX + bY + cZ)) f(z)

= exp(icλ+ 1
4(b+ ai)(2z + λ(−b+ ai)) f(z + λ(−b+ ai)).

In [7], we showed that for each λ > 0, ρλ is a MN-contraction of (πn) with
r(n) =

√
2λ/n, the operators An being defined by Anfnp = fλp . Then ρλ is

also a uB-contraction hence a B-contraction of (πn).
Note that another choice of the operators An does not necessarily lead to

a contraction result. For example, for each n, consider a unitary operator
Bn from Hn onto H so that B−1

n f0 = fnn2 . Then for h = expH(cZ), c 6= 0,
we have

〈Bnπn(cr(n)(h))B
−1
n f0, f0〉n = 〈πn(cr(n))f

n
n2 , f

n
n2〉n

= exp
(
−icnr(n)2

2
+ icn2r(n)2

)
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which does not converge as n → +∞. Thus (Bnπn(cr(n)(h))B−1
n f0)

does not converge in H. Incidently, this also shows that the sequence
‖Anπn(cr(n)(h))A−1

n − ρ(h)‖op does not converge to 0 as n→ +∞. Indeed,
for un = AnB

−1
n f0 ∈ H we have

‖Anπn(cr(n)(h))A
−1
n un − ρ(h)un‖2

= 2− 2 Re〈πn(cr(n)(h))B
−1
n f0, A

−1
n ρ(h)AnB−1

n f0〉

= 2− 2eicλ Re〈πn(cr(n)(h))B
−1
n f0, B

−1
n f0〉

because A−1
n ρ(h)Anf(z) = ρ(h)f(z) = eicλf(z) for each f ∈ H. Hence

‖Anπn(cr(n)(h))A−1
n un − ρ(h)un‖ does not converge to 0.

More generally, in [10], we obtained a MN-contraction of the discrete
series of a semi-simple non-compact Lie group to the direct product of a
Heisenberg group by an abelian group.

Similarly, in [6], we gave a MN-contraction of the unitary irreducible
representations of SU(2) to the representation ρλ (see also [23]). This result
was partially generalized in [9].

5.2. Some open questions. Here we mention some problems and open
questions about contractions of representations which are motivated in par-
ticular by the previous examples.

(1) Let G be a semi-simple non-compact Lie group. Assume that there is
a group contraction of G to a Lie group H. What unitary represen-
tations of H are MN-contractions of representations of the unitary
principal series and of the discrete series (if there exists) of G ?

(2) Let G be a semi-simple compact Lie group. Assume that there is
a group contraction of G to a Lie group H. What unitary repre-
sentations of H are contractions of the unitary irreducible (finite-
dimensional) representations of G?

(3) The problem of the ‘unitarization’ of the contractions of represen-
tations. In the literature, we can find some examples of nuMN-
contractions. For instance, a nuMN-contraction of the discrete series
of SU(1, 1) to some unitary representations of Rn+1 o SO(1, 1) was
given in [12]. Then, a natural question is whether such a nuMN-
contraction is also a MN-contraction. More generally, is any nuMN-
contraction of unitary representations a MN-contraction?
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